Die kältetechnische Ausstattung von Windkanälen und Klimakammern

Dr.-Ing. Alfred Erhard Axima Refrigeration GmbH, Lindau

Windkanäle wozu?

- Simulation von Umweltbedingungen unter Fahrbedingungen
- Test von Systemen und Komponenten
 - Motor, Klimaanlage (Heizen und Kühlen)
 - Bremsen, Türverriegelung, Scheibenwischer....
- Fahrtwind wird simuliert
 - Windgeschwindigkeit wird über Rollenprüfstand geregelt
 - stehendes Fahrzeug mit leichter Luftbewegung (Parken, Stau)
- Komfortuntersuchungen
 - Bestimmung des k-Wertes
- Weniger Feldversuche erforderlich
- Reproduzierbare Bedingungen

Kälte und Wärme im Windkanal

- Konditionierung des Kanals
 - Temperatur
 - Feuchte
 - Regelung konstante Temperatur

Kälte und Wärme im Windkanal

Wärmequellen

- Antriebsenergie des Gebläses
- Abwärme des Testfahrzeuges
- Abwärme des Rollenprüfstandes
- Pumpenleistung
- Wärmeeintrag aus der Umgebung
- Abkühlung des Kanals
- Sonnensimulation

Kälte und Wärme im Windkanal

- Weitere Verbraucher die versorgt werden
 - Frischluftentfeuchtung und Konditionierung
 - Klimatisierung von Vorbereitungsräumen
 - Wasserkühlung zur Schneeerzeugung
 - Druckluftkühlung
 - Kühlung des Gebläseantriebes

–

Kälteerzeugung und -Verteilung

- Hauptwärmeübertrager (im Kanal)
 - wesentliche Komponente
 - entscheidend für Temperaturschichtung
 - geringer Druckverlust wesentlich für Antriebsleistung
 - entscheidend für Strömungsqualität (Konstruktion)

Kälteerzeugung und -Verteilung

- Kälteerzeugung
 - flexible Kälteanlage für alle Bedingungen
 - gute Regelbarkeit
 - Null-Last

- Kälteverteilung
 - hauptsächlich Kälteträgersysteme

Eigenschaften von Kälteträgern

- Betriebstemperaturen von 60 °C bis +80 °C
- Keine Einfriergefahr
- Synthetischer Kälteträger oder auf Wasserbasis
- Möglichst nicht brennbar
- Gute Stoffwerte (z.B. r*cp, Viskosität)
- Preis
- Geringe Umweltbelastung (Wasser-Gefährdungsklasse)
- Ungiftig

Anforderungen an die Kälteanlage

Enge Toleranzen

- in der Luft Temperatur
 - zeitliche und
 - räumliche Abweichungen z. B. ± 0,5K
- in der Feuchte (Taupunkt Unterschreitung)

Unabhängige Systeme

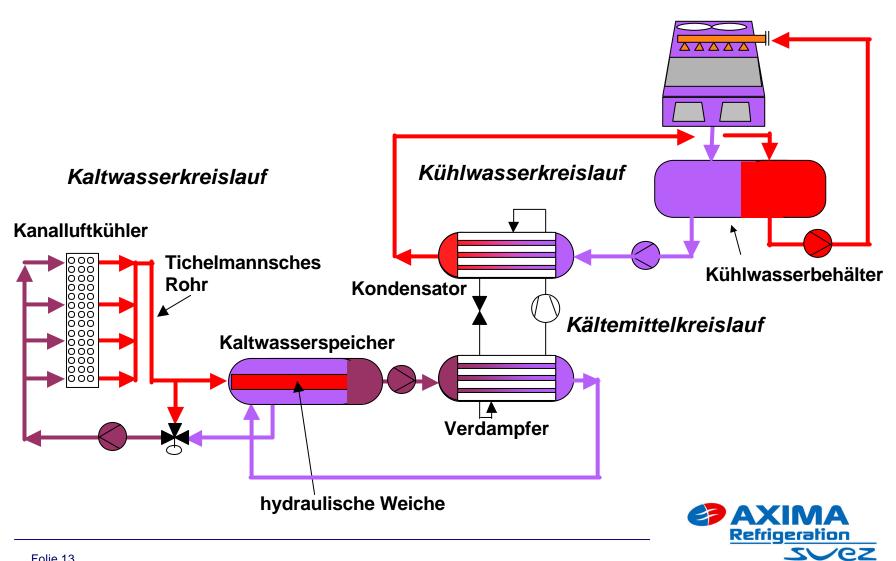
 keine Störungen bei mehreren Verbrauchern durch strenge hydraulische Entkopplung

Anforderungen an die Kälte

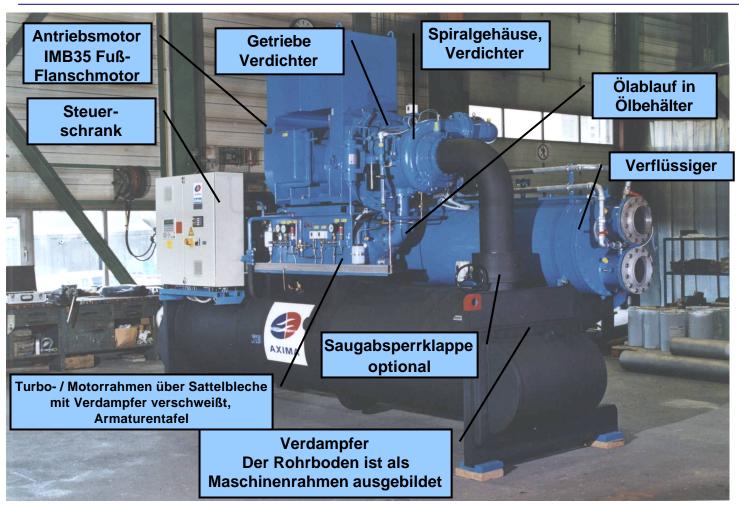
- Teilweise schnelle Änderungen der Leistung
 - Stop and Go
 - Beschleunigung / Verzögerung
- Kontrollierte Änderungen der Temperatur
 - Temperatur-Rampen mit vorgegebenem, konstanten Gradienten

Anforderungen an die Kälte

- Hochwertige Regelung und Steuerung (Komponenten und Software)
 - Schnell (pneumatik), spezielle Stellgeräte
 - Zuverlässig
 - Gut modifizierbar

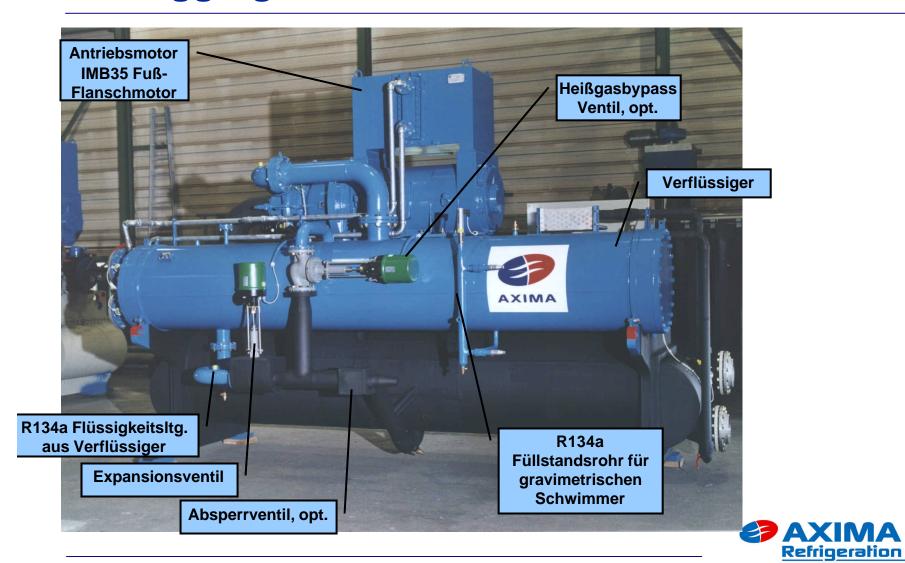


Ausstattungsmerkmale


Aerodynamik Wind – Kanäle

- Konstante Lufttemperatur >> 0°C
- Wasser als Kälteträger
 - bei konstanter Temperatur
- Schnelle Lastwechsel
- Turboverdichter gut geeignet wegen konstanten
 Bedingungen und großen Leistungen
- Hochleistungs Rohrbündelverdampfer
- Kältemittel R134a
- Rückkühlung wassergekühlt (Rohrbündel)

Verfahrensschema



Kälteaggregat mit Turboverdichter

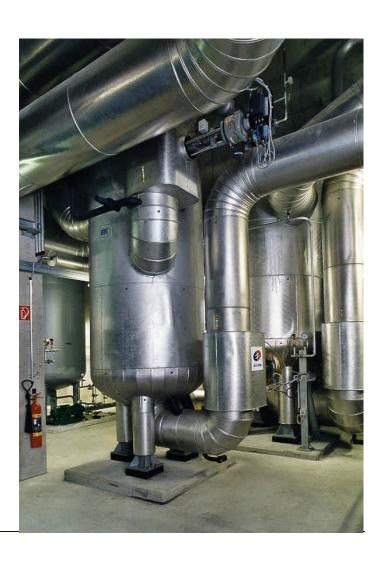
Kälteaggregat mit Turboverdichter

ZVez

Ausstattungsmerkmale

- Klima Wind Kanäle
 - Extrem unterschiedliche Temperaturen (-50°C +60°C)
 - Werkstoffauswahl
 - Schnelle Lastwechsel
 - Große Leistungen auch transiente Vorgänge
 - Schraubenverdichter gut geeignet
 - hohe Druckverhältnisse in einer Stufe möglich (Vorteil gegenüber 2-stufigen Anlagen)
 - gute Regelbarkeit
 - Variables Vi

Ausstattungsmerkmale


- Klima Wind Kanäle
 - vorzugsweise vollverschweißte Plattenverdampfer
 - Kältemittel:
 - R717 (Ammoniak)
 - R507
 - Rückkühlung angepaßt
 - energetische Optimierung
 - Zweistufige Entspannung (offener Eco)
 - Variables Vi
 - angepasste Temperaturen

Blick in Maschinenraum

Economizer

R507 Sammler

Hydraulische Weichen

Ausstattung

- Weitere Komponenten
 - Pumpen
 - Regelventile
 - El. Heizungen
 - Dampf-Heizungen
 - Frischluftversorgung
 - Befeuchtung
 - Automatische Entlüfter bei tiefen Temperaturen

Zusammenfassung

- Integriertes Gesamtdesign von Kanal, Kühler und Kälteanlage
- Aerodynamische Vorgaben
- Konstruktive Vorgaben
- Energetische Vorgaben
- Luftverteilung, Luftschichtung
- Temperaturverteilung, Temperaturschichtung
- Be-/Entfeuchtung
- Frischluftkonditionierung
- Dynamische Änderungen bei Lastwechseln (Auswirkung auf Temperatur, Feuchte etc.)

Kälte für Windkanäle - Referenzen

Denso. Echino	g / München D	-30/+70°C	PKW
 	4 / IVIOIII OII O		

Ferrari, Maranello I +20°C Formel 1

Benetton, Estone UK +25°C Formel 1

Sanden, Bad Nauheim D -40/+50°C PKW

Volvo, Göteborg S +10 / +50 °C LKW

RTA Winkanal, Wien A -50 / +50 °C Bahn

Sauber, Hinwil Ch +20 °C Formel 1

Visteon, Kerpen D -40°C / +60°C PKW

